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1. Introduction

In this paper, we present a multitude of global semiparametric sufficient
efficiency results under a variety of generalized (η, ρ)-invexity conditions
for the following multiobjective fractional programming problem involving
nondifferentiable functions:

(P ) Minimize
(

f1(x)+‖A1x‖a(1)

g1(x)−‖B1x‖b(1)

, . . . ,
fp(x)+‖Apx‖a(p)

gp(x)−‖Bpx‖b(p)

)

subject to

Gj(x)+‖Cjx‖c(j) �0, j ∈q, Hk(x)=0, k ∈ r, x ∈X,

where X is an open convex subset of R
n (n-dimensional Euclidean space),

fi, gi, i ∈p≡{1,2, . . . , p},Gj , j ∈q, and Hk, k ∈ r, are real-valued functions
defined on X, for each i ∈p and each j ∈q, Ai,Bi , and Cj are, respectively,
�i × n, mi × n, and nj × n matrices, ‖ · ‖a(i), ‖ · ‖b(i), and ‖ · ‖c(j) are arbi-
trary norms in R

�i , R
mi , and R

nj , respectively, and for each i ∈ p, gi(x) −
‖Bix‖b(i) >0 for all x satisfying the constraints of (P ).
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Several classes of static and dynamic optimization problems with multi-
ple fractional objective functions have been the subject of intense investiga-
tions in the past few years, which have produced a number of sufficiency
and duality results for these problems. Fairly extensive lists of references
pertaining to various aspects of multiobjective fractional programming are
available in [22–25]. For more information about the vast general area of
multiobjective programming, the reader may consult [11, 17, 18, 20].

A close examination of these and other related sources will readily reveal
the fact that so far multiobjective fractional programming problems con-
taining arbitrary norms in their objective functions and constraints have
not been studied in the area of multiobjective programming. It is our inten-
tion to fully investigate the efficiency and duality aspects of these impor-
tant and interesting nonlinear programming models in a series of papers.
We shall continue our investigation here by establishing a fairly large num-
ber of global semiparametric sufficient efficiency results for (P ). The rel-
evance and applicability of these results to the construction and analysis
of several major semiparametric duality models for (P ) are demonstrated
in [Zalmai, submitted], and their parametric counterparts are presented in
[Zalmai, submitted].

The rest of this paper is organized as follows. In Section 2, we present
a number of definitions and auxiliary results which will be needed in the
sequel. In Section 3, we begin our discussion of sufficient efficiency con-
ditions where we formulate and prove numerous sets of efficiency criteria
under a variety of generalized (η, ρ)-invexity assumptions that are placed
on the individual as well as certain combinations of the problem functions.
Utilizing two partitioning schemes, in Section 4 we establish several sets
of generalized sufficiency results each of which is in fact a family of such
results whose members can easily be identified by appropriate choices of
certain sets and functions. Finally, in Section 5 we summarize our main
results and also point out some further research opportunities arising from
certain modifications of the principal problem model considered in this
paper.

It is evident that all the sufficient efficiency results obtained for (P ) are
also applicable, when appropriately specialized, to the following ten classes
of problems with multiple, fractional, and conventional objective functions,
which are particular cases of (P ):

(P 1) Minimize
x∈F

(
f1(x)+‖A1x‖a(1), . . . , fp(x)+‖Apx‖a(p)

);

(P 2) Minimize
x∈F

f1(x)+‖A1x‖a(1)

g1(x)−‖B1x‖b(1)

;
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(P 3) Minimize
x∈F

f1(x)+‖A1x‖a(1),

where F (assumed to be nonempty) is the feasible set of (P ), that is,

F={x ∈X:Gj(x)+‖Cjx‖c(j) �0, j ∈q, Hk(x)=0, k ∈ r};

(P 4) Minimize
(

f1(x)+〈x,P1x〉1/2

g1(x)−〈x,Q1x〉1/2
, . . . ,

fp(x)+〈x,Ppx〉1/2

gp(x)−〈x,Qpx〉1/2

)

subject to

Gj(x)+〈x,Rjx〉1/2 �0, j ∈q, Hk(x)=0, k ∈ r, x ∈X,

where Pi,Qi, i ∈p, and Rj, j ∈q, are n×n symmetric positive semidefinite
matrices, 〈u, v〉 denotes the inner (scalar) product of the ν-dimensional vec-
tors u and v, that is, 〈u, v〉=∑ν

i=1 uivi , where ui and vi are the ith com-
ponents of u and v, respectively, and for each i ∈p, gi(x)−〈x,Qix〉1/2 > 0
for all feasible solutions of (P4);

(P 5) Minimize
x∈G

(
f1(x)+〈x,P1x〉1/2, . . . , fp(x)+〈x,Ppx〉1/2

)
;

(P 6) Minimize
x∈G

f1(x)+〈x,P1x〉1/2

g1(x)−〈x,Q1x〉1/2
;

(P 7) Minimize
x∈G

f1(x)+〈x,P1x〉1/2,

where G is the feasible set of (P4), that is,

G={x ∈X:Gj(x)+〈x,Rjx〉1/2 �0, j ∈q, Hk(x)=0, k ∈ r};

(P 8) Minimize
x∈H

(
f1(x), . . . , fp(x)

);

(P 9) Minimize
x∈H

f1(x)

g1(x)
;

(P 10) Minimize
x∈H

f1(x),

where H={x ∈X:Gj(x)�0, j ∈q, Hk(x)=0, k ∈ r}.
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The problems (P 4), (P 5), (P 6), and (P 7) are special cases of (P ),
(P 1), (P 2), and (P 3), respectively, which are obtained by choosing ‖ · ‖a(i),

‖ · ‖b(i), i ∈ p, and ‖ · ‖c(j), j ∈ q, to be the �2-norm ‖ · ‖2, and defining
Pi =AT

i Ai,Qi =BT
i Bi, i ∈p, and Rj =CT

j Cj , j ∈q.
Since in most cases these results can easily be modified and restated for

each one of the above ten problems, we shall not state them explicitly.
Optimization problems containing norms arise naturally in many areas

of the decision sciences, applied mathematics, and engineering. They are
encountered most frequently in facility location problems, approximation
theory, and engineering design. A number of these problems have already
been investigated in the related literature. Similarly, optimization problems
involving square roots of positive semidefinite quadratic forms have arisen
in stochastic programming, multifacility location problems, and portfolio
selection problems, among others. A fairly extensive list of references per-
taining to several aspects of these two classes of problems is given in [21].

2. Preliminaries

In this section we recall, for convenience of reference, the definitions of cer-
tain classes of generalized convex functions which will be needed in the
sequel. We begin by defining an invex function which has been instrumen-
tal in creating a vast array of interesting and important classes of general-
ized convex functions.

DEFINITION 2.1. Let f be a real-valued differentiable function defined
on X. Then f is said to be η-invex at y if there exists a function η: X ×
X →R

n such that for each x ∈X,

f (x)−f (y)� 〈∇f (y), η(x, y)〉,

where ∇f (y)= (∂f (y)/∂y1, ∂f (y)/∂y2, . . . , ∂f (y)/∂yn)
T is the gradient of f

at y and the superscript T signifies transposition; f is said to be η-invex
on X if the above inequality holds for all x, y ∈X.

From this definition it is clear that every real-valued differentiable convex
function is invex with η(x, y) = x − y. This generalization of the concept
of convexity was originally proposed by Hanson [5] who showed that for
a nonlinear programming problem of the form

Minimizef (x) subject to gi(x)�0, i ∈m, x ∈R
n,

where the differentiable functions f, gi : R
n → R, i ∈ m, are invex with

respect to the same function η: R
n × R

n → R
n, the Karush–Kuhn–Tucker
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necessary optimality conditions are also sufficient. The term invex (for
invariant convex) was coined by Craven [2] to signify the fact that the in-
vexity property, unlike convexity, remains invariant under bijective coordi-
nate transformations.

In a similar manner, one can readily define η-pseudoinvex and η-quasiinvex
functions as generalizations of differentiable pseudoconvex and quasiconvex
functions.

The notion of invexity has been generalized in several directions. For
our present purposes, we shall need a simple extension of invexity, namely,
ρ-invexity which was originally defined in [8].

Let η be a function from X×X to R
n, and let h be a real-valued differ-

entiable function defined on X.

DEFINITION 2.2. The function h is said to be (strictly) (η, ρ)-invex at x∗

if there exists ρ ∈R such that for each x ∈X,

h(x)−h(x∗)(>)� 〈∇h(x∗), η(x, x∗)〉+ρ‖x −x∗‖2.

DEFINITION 2.3. The function h is said to be (prestrictly) (η, ρ)-quasiinvex
at x∗ ∈X if there exists ρ ∈R such that for each x ∈X,

h(x)(<)�h(x∗) ⇒ 〈∇h(x∗), η(x, x∗)〉�−ρ‖x −x∗‖2.

DEFINITION 2.4. The function h is said to be (strictly) (η, ρ)-pseudoinvex
at x∗ ∈X if there exists ρ ∈R such that for each x ∈X(x 
=x∗),

〈∇h(x∗), η(x, x∗)〉�−ρ‖x −x∗‖2 ⇒ h(x)(>)�h(x∗).

From the above definitions it is clear that if h is (η, ρ)-invex at x∗, then
it is both (η, ρ)-quasiinvex and (η, ρ)-pseudoinvex at x∗, if h is (η, ρ)-
quasiinvex at x∗, then it is prestrictly (η, ρ)-quasiinvex at x∗, and if h is
strictly (η, ρ)-pseudoinvex at x∗, then it is (η, ρ)-quasiinvex at x∗.

In the proofs of the sufficiency theorems, sometimes it may be more con-
venient to use certain alternative but equivalent forms of the above defini-
tions. These are obtained by considering the contrapositive statements. For
example, (η, ρ)-pseudoinvexity can be defined in the following equivalent
way: The function h is said to be (η, ρ)-pseudoinvex at x∗ if there exists
ρ ∈R such that for each x ∈X,

h(x)<h(x∗) ⇒ 〈∇h(x∗), η(x, x∗)〉<−ρ‖x −x∗‖2.

The concept of ρ-invexity has been extended in many ways, and various
types of generalized ρ-invex functions have been utilized for establishing a
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variety of sufficient optimality criteria and duality relations for several clas-
ses of nonlinear programming problems. For more information about invex
functions, the reader may consult [1–4, 6, 10, 12, 14, 16], and for recent
surveys of these and related functions, the reader is referred to [9, 15].

In the remainder of this section, we present a set of semiparametric nec-
essary efficiency conditions for (P ). We begin by introducing a consistent
notation for vector inequalities. For a, b∈R

m, the following order notation
will be used: a � b if and only if ai � bi for all i ∈m; a � b if and only if
ai �bi for all i ∈m, but a 
=b; a >b if and only if ai >bi for all i ∈m; and
a �b is the negation of a �b.

Consider the multiobjective problem

(P ∗) Minimize
x∈X

F(x)= (F1(x), . . . , Fp(x)),

where Fi, i ∈p, are real-valued functions defined on the set X .
An element x◦ ∈X is said to be an efficient (Pareto optimal, nondominated,

noninferior) solution of (P ∗) if there exists no x ∈X such that F(x)�F(x◦).
Throughout the sequel, we shall assume that the problem functions

fi, gi, i ∈ p, Gj , j ∈ q, and Hk, k ∈ r, are continuously differentiable on
the open set X.

THEOREM 2.1 [Zalmai, Submitted]. Let x∗ be a normal efficient solution
of (P) (i.e., an efficient solution of (P) at which a suitable constraint qualifi-
cation holds) and let λ∗

i =ϕi(x
∗), i ∈p. Then there exist u∗ ∈U≡{u∈R

p, u>

0,
∑p

i=1 ui=1}, v∗ ∈ R
q
+ ≡ {v ∈ R

q, v � 0}, w∗ ∈ R
r , α∗i ∈ R

�i , β∗i ∈ R
mi , i ∈ p,

and γ ∗j ∈R
nj , j ∈q, such that

p∑
i=1

u∗
i {∇fi(x

∗)+AT
i α∗i −λ∗

i [∇gi(x
∗)−BT

i β∗i ]}

+
q∑

j=1

v∗
j [∇Gj(x

∗)+CT
j γ ∗j ]+

r∑
k=1

w∗
k∇Hk(x

∗)=0,

v∗
j [Gj(x

∗)+‖Cjx
∗‖c(j)]=0, j ∈q,

‖α∗i‖∗
a(i) �1, ‖β∗i‖∗

b(i) �1, i ∈p,
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‖γ ∗j‖∗
c(j) �1, j ∈q,

〈α∗i ,Aix
∗〉=‖Aix

∗‖a(i), 〈β∗i , Bix
∗〉=‖Bix

∗‖b(i), i ∈p,

〈γ ∗j ,Cjx
∗〉=‖Cjx

∗‖c(j), j ∈q,

where for each i ∈p, ϕi is the ith objective function of (P), and ‖ · ‖∗
a is the

dual of the norm ‖ · ‖a, that is, ‖δ‖∗
a = max

‖ξ‖a=1
|〈δ, ξ〉|.

The necessary efficiency conditions in Theorem 2.1 contain two sets of
parameters, namely, {u∗

i } and {λ∗
i }, i ∈p, which were introduced as a con-

sequence of our indirect approach utilized in [Zalmai, submitted] requiring
two auxiliary intermediate problems. It is possible to eliminate one of these
two sets of parameters and thus obtain a semiparametric version of Theo-
rem 2.1. Indeed, substituting Ni(x

∗)/Di(x
∗), for λ∗

i =ϕi(x
∗), where Ni(x

∗)=
fi(x

∗) + ‖Aix
∗‖a(i) and Di(x

∗) = gi(x
∗) − ‖Bix

∗‖b(i), i ∈ p, simplifying, and
redefining the multiplier vectors, we obtain the following semiparametric
form of Theorem 2.1.

THEOREM 2.2. Let x∗ be a normal efficient solution of (P). Then there
exist u∗ ∈U, v∗ ∈R

q
+, w∗ ∈R

r , α∗i ∈R
�i , β∗i ∈R

mi , i ∈p, and γ ∗j ∈R
nj , j ∈q,

such that
p∑

i=1

u∗
i {Di(x

∗)[∇fi(x
∗)+AT

i α∗i ]−Ni(x
∗)[∇gi(x

∗)−BT
i β∗i ]}

+
q∑

j=1

v∗
j [∇Gj(x

∗)+CT
j γ ∗j ]

+
r∑

k=1

w∗
k∇Hk(x

∗)=0, (2.1)

v∗
j [Gj(x

∗)+‖Cjx
∗‖c(j)]=0, j ∈q, (2.2)

‖α∗i‖∗
a(i) �1, ‖β∗i‖∗

b(i) �1, i ∈p, (2.3)

‖γ ∗j‖∗
c(j) �1, j ∈q, (2.4)

〈α∗i ,Aix
∗〉=‖Aix

∗‖a(i), 〈β∗i , Bix
∗〉=‖Bix

∗‖b(i), i ∈p, (2.5)

〈γ ∗j ,Cjx
∗〉=‖Cjx

∗‖c(j), j ∈q. (2.6)
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We conclude this section by specializing Theorem 2.2 for problem (P 4).
This will provide a glimpse of what is involved in modifying and restating
the results of this paper for (P 4)–(P 7).

THEOREM 2.3. Let x∗ be a normal efficient solution of (P). Then there
exist u∗ ∈U, v∗ ∈R

q
+, w∗ ∈R

r , ξ ∗i , π∗i , σ ∗j ∈R
n, i ∈p, j ∈q, such that

p∑
i=1

u∗
i {νi(x

∗)[∇fi(x
∗)+Kiξ

∗i ]− δi(x
∗)[∇gi(x

∗)−Liπ
∗i ]}

+
q∑

j=1

v∗
j [∇Gj(x

∗)+Mjσ
∗j ]

+
r∑

k=1

w∗
k∇Hk(x

∗)=0,

v∗
j [Gj(x

∗)+〈x∗,Mjx
∗〉1/2]=0, j ∈q,

〈ξ ∗i ,Kiξ
∗i〉�1, 〈π∗i ,Liπ

∗i〉�1, i ∈p,

〈σ ∗j ,Mjσ
∗j 〉�1, j ∈q,

〈ξ ∗i ,Kix
∗i〉=〈x∗i ,Kix

∗i〉1/2, 〈π∗i ,Lix
∗i〉=〈x∗i ,Lix

∗i〉1/2, i ∈p,

〈σ ∗j ,Mjx
∗〉=〈x∗,Mjx

∗〉1/2, j ∈q,

where νi(x
∗)=fi(x)+〈x,Pix〉1/2 and δi(x

∗)=gi(x)−〈x,Qix〉1/2, i ∈p.

The form and contents of the necessary efficiency conditions given in
Theorem 2.2 provide clear guidelines for formulating numerous sets of
sufficient efficiency conditions and many duality models for (P ). The rest
of this paper is devoted to investigating various sets of sufficiency crite-
ria for (P ). A vast number of duality results for (P ) which are based
on these sufficiency results and Theorem 2.2 are discussed in [Zalmai,
Submitted].
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3. Sufficient efficiency conditions

In this section, we present a fairly large number of semiparametric sufficient
efficiency results in which various generalized (η, ρ)-invexity assumptions
are imposed on the individual as well as certain combinations of the
problem functions. In formulating these results, we shall use a streamlined
version of the necessary efficiency conditions given in Theorem 2.2. Spe-
cifically, we use a slightly altered version of these conditions obtained by
dropping (2.5) and modifying (2.2) accordingly. The resulting reduced set
of equations and inequalities will lead to relatively shorter statements and
proofs for many of the sufficiency principles that will be developed in this
study.

In the proofs of our sufficiency theorems, we shall make frequent use of
the well-known generalized Cauchy inequality which is formally stated in
the following lemma.

LEMMA 3.1 [7]. For each a, b∈R
m, 〈a, b〉�‖a‖∗‖b‖.

To simplify the ensuing presentation, we use the following list of symbols:

Ai(x, α)=fi(x)+〈αi,Aix〉, i ∈p,

Bi(x, β)=−gi(x)+〈βi,Bix〉, i ∈p,

Cj (x, γ )=Gj(x)+〈γ j ,Cjx〉, j ∈q,

Dk(x,w)=wkHk(x), k ∈ r,

Ei(x, x∗, α, β)=Di(x
∗)[fi(x)+〈αi,Aix〉]−Ni(x

∗)[gi(x)−〈βi,Bix〉],
i ∈p,

C(x, v, γ )=
q∑

j=1

vj [Gj(x)+〈γ j ,Cjx〉],

D(x,w)=
r∑

k=1

wkHk(x),

E(x, x∗, u, α,β)=
p∑

i=1

ui{Di(x
∗)[fi(x)+〈αi,Aix〉]−Ni(x

∗)[gi(x)

−〈βi,Bix〉]},

F(x, v,w, γ )=
q∑

j=1

vj [Gj(x)+〈γ j ,Cjx〉]+
r∑

k=1

wkHk(x),

I+(u)={i ∈p :ui >0} for fixed u∈U,

J+(v)={j ∈q :vj >0} for fixed v ∈R
q
+,
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K∗(w)={k ∈ r :wk 
=0} for fixed w ∈R
r ,

U0 ={u∈R
p
+ :

p∑
i=1

ui =1},

α = (α1, α2, . . . , αp),

β = (β1, β2, . . . , βp),

γ = (γ 1, γ 2, . . . , γ q).

We begin our discussion of sufficiency criteria for (P ) with a collection
of results in which separate (η, ρ)-invexity conditions are imposed on the
functions Ai(·, α) and Bi(·, β), i ∈p, whereas different types of generalized
(η, ρ)-invexity assumptions are placed on certain combinations of the con-
straint functions.

THEOREM 3.1. Let x∗ ∈F and assume that Ni(x
∗)�0, i ∈p, and that there

exist u∗ ∈U, v∗ ∈R
q
+, w∗ ∈R

r , α∗i ∈R
�i , β∗i ∈R

mi , i ∈p, and γ ∗j ∈R
nj , j ∈q,

such that

p∑
i=1

u∗
i {Di(x

∗)[∇fi(x
∗)+AT

i α∗i ]−Ni(x
∗)[∇gi(x

∗)−BT
i β∗i ]}

+
q∑

j=1

v∗
j [∇Gj(x

∗)+CT
j γ ∗j ]

+
r∑

k=1

w∗
k∇Hk(x

∗)=0, (3.1)

v∗
j [Gj(x

∗)+〈γ ∗j ,Cjx
∗〉]=0, j ∈q, (3.2)

‖α∗i‖∗
a(i) �1, ‖β∗i‖∗

b(i) �1, i ∈p, (3.3)

‖γ ∗j‖∗
c(j) �1, j ∈q, (3.4)

〈α∗iAix
∗〉=‖Aix

∗‖a(i), 〈β∗iBix
∗〉=‖Bix

∗‖b(i), i ∈p. (3.5)

Assume, furthermore, that any one of the following six sets of conditions
holds:
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(a) (i) for each i ∈ p, Ai(·, α∗) is (η, ρ̄i)-invex and Bi(·, β∗) is (η, ρ̃i)-
invex at x∗;

(ii) for each j ∈J+ ≡J+(v∗), Cj (·, γ ∗) is (η, ρ̂j )-quasiinvex at x∗;

(iii) for each k ∈K∗ ≡K∗(w∗), Dk(·,w∗) is (η, ρ̆k)-quasiinvex at x∗;

(iv) ρ∗ + ∑
j∈J+ v∗

j ρ̂j + ∑
k∈K∗ ρ̆k � 0, where ρ∗ = ∑p

i=1 u∗
i [Di(x

∗)ρ̄i +
Ni(x

∗)ρ̃i ];

(b) (i) for each i ∈ p, Ai(·, α∗) is (η, ρ̄i)-invex and Bi(·, β∗) is (η, ρ̃i)-
invex at x∗;

(ii) C(·, v∗, γ ∗) is (η, ρ̂)-quasiinvex at x∗;

(iii) for each k ∈K∗, Dk(·,w∗) is (η, ρ̆k)-quasiinvex at x∗;

(iv) ρ∗ + ρ̂ +∑
k∈K∗ ρ̆k �0;

(c) (i) for each i ∈ p, Ai(·, α∗) is (η, ρ̄i)-invex and Bi(·, β∗) is (η, ρ̃i)-
invex at x∗;

(ii) for each j ∈J+, Cj (·, γ ∗) is (η, ρ̂j )-quasiinvex at x∗;

(iii) D(·,w∗) is (η, ρ̆)-quasiinvex at x∗;

(iv) ρ∗ +∑
j∈J+ v∗

j ρ̂j + ρ̆ �0;

(d) (i) for each i ∈p, Ai(·, α∗) is (η, ρ̄i)-invex and Bi(·, β∗) is (η, ρ̃i)-invex
at x∗;

(ii) C(·, v∗, γ ∗) is (η, ρ̂)-quasiinvex at x∗;

(iii) D(·,w∗) is (η, ρ̆)-quasiinvex at x∗;

(iv) ρ∗ + ρ̂ + ρ̆ �0;

(e) (i) for each i ∈ p, Ai(·, α∗) is (η, ρ̄i)-invex and Bi(·, β∗) is (η, ρ̃i)-
invex at x∗;

(ii) F(·, v∗,w∗, γ ∗) is (η, ρ̂)-quasiinvex at x∗;

(iii) ρ∗ + ρ̂ �0;
(f) the Lagrangian-type function

z→L(z, x∗, u∗, v∗,w∗, α∗, β∗, γ ∗)=
p∑

i=1

u∗
i {Di(x

∗)[fi(z)+〈α∗i ,Aiz〉]

−Ni(x
∗)[gi(z)−〈β∗i , Biz〉]}+

q∑
j=1

v∗
j [Gj(z)+〈γ ∗j ,Cjz〉]+

r∑
k=1

w∗
kHk(z)

is (η,0)-pseudoinvex at x∗.
Then x∗ is an efficient solution of (P).
Proof. Let x be an arbitrary feasible solution of (P ).

(a): Since for each j ∈J+,
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Gj(x)+〈γ ∗j ,Cjx〉�Gj(x)+‖γ ∗j‖∗
c(j)‖Cjx‖c(j) (by Lemma 3.1)

�Gj(x)+‖Cjx‖c(j) (by (3.4))

�0 (since x ∈F)

=Gj(x
∗)+〈γ ∗j ,Cjx

∗〉 (by (3.2)),

in view of (ii) we have

〈∇Gj(x
∗)+CT

j γ ∗j , η(x, x∗)〉�−ρ̂j‖x −x∗‖2.

As v∗
j � 0 for each j ∈ q, and v∗

j = 0 for each j ∈ q\J+ (complement of J+
relative to q), the above inequalities yield

〈 q∑
j=1

v∗
j [∇Gj(x

∗)+CT
j γ ∗j ], η(x, x∗)

〉
�−

∑
j∈J+

v∗
j ρ̂j‖x −x∗‖2. (3.6)

In a similar manner we can show that (iii) leads to the following inequality:

〈 r∑
k=1

w∗
k∇Hk(x

∗), η(x, x∗)
〉
�−

∑
k∈K∗

ρ̆k‖x −x∗‖2. (3.7)

Keeping in mind that u∗ >0, Ni(x
∗)�0, and Di(x

∗)>0, we have

p∑
i=1

u∗
i {Di(x

∗)[fi(x)+‖Aix‖a(i)]−Ni(x
∗)[gi(x)−‖Bix‖b(i)]}

�
p∑

i=1

u∗
i {Di(x

∗)[fi(x)+‖α∗i‖∗
a(i)‖Aix‖a(i)]

−Ni(x
∗)[gi(x)−‖β∗i‖∗

b(i)‖Bix‖b(i)]} (by (3.3))

�
p∑

i=1

u∗
i {Di(x

∗)[fi(x)+〈α∗i ,Aix〉]

−Ni(x
∗)[gi(x)−〈β∗i , Bix〉]} (by Lemma 3.1)

=
p∑

i=1

u∗
i {Di(x

∗){fi(x)+〈α∗i ,Aix〉− [fi(x
∗)+〈α∗i ,Aix

∗〉]}

−Ni(x
∗){gi(x)−〈β∗i , Bix〉− [gi(x

∗)−〈β∗i , Bix
∗〉]}}

(by the definitions of Ni(x
∗) and Di(x

∗), i ∈p, and (3.5))
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�
p∑

i=1

u∗
i {〈Di(x

∗)[∇fi(x
∗)+AT

i α∗i ]−Ni(x
∗)[∇gi(x

∗)−BT
i β∗i ], η(x, x∗)〉

+[Di(x
∗)ρ̄i +Ni(x

∗)ρ̃i ]‖x −x∗‖2} (by (i))

=−
〈 q∑

j=1

v∗
j [∇Gj(x

∗)+CT
j γ ∗j ]

+
r∑

k=1

w∗
k∇Hk(x

∗), η(x, x∗)
〉
+

p∑
i=1

u∗
i [Di(x

∗)ρ̄i

+Ni(x
∗)ρ̃i ]‖x −x∗‖2 (by (3.1))

�
(
ρ∗ +

∑
j∈J+

v∗
j ρ̂j +

∑
k∈K∗

ρ̆k

)
‖x −x∗‖2 (by (3.6) and (3.7))

�0 (by (iv)). (3.8)

Since u∗ >0 the above inequality implies that

(
D1(x

∗)[f1(x)+‖A1x‖a(1)]−N1(x
∗)[g1(x)−‖B1x‖b(1)], . . . ,

Dp(x∗)[fp(x)+‖Apx‖a(p)]−Np(x∗)[gp(x)−‖Bpx‖b(p)]
)
�

(
0, . . . ,0

)
,

which, in turn, implies that

(
f1(x)+‖A1x‖a(1)

g1(x)−‖B1x‖b(1)

, . . . ,
fp(x)+‖Apx‖a(p)

gp(x)−‖Bpx‖b(p)

)
�

(N1(x
∗)

D1(x∗)
, . . . ,

Np(x∗)
Dp(x∗)

)
.

Since Ni(x
∗)/Di(x

∗)=ϕi(x
∗), i ∈p, and x was arbitrary, we conclude that

x∗ is an efficient solution of (P ).
(b): As shown in part (a), for each j ∈J+, we have Gj(x)+〈γ ∗j ,Cjx〉�

Gj(x
∗)+〈γ ∗j ,Cjx

∗〉 and hence

q∑
j=1

v∗
j [Gj(x)+〈γ ∗j ,Cjx〉]�

q∑
j=1

v∗
j [Gj(x

∗)+〈γ ∗j ,Cjx
∗〉],

which in view of (ii) implies that

〈 q∑
j=1

v∗
j [∇Gj(x

∗)+CT
j γ ∗j ], η(x, x∗)

〉
�−ρ̂‖x −x∗‖2.

Now proceeding as in the proof of part (a) and using this inequality
instead of (3.6), we arrive at (3.8), which leads to the conclusion that x∗

is an efficient solution of (P ).
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(c)–(e): The proofs are similar to those of parts (a) and (b).
(f): By our (η,0)-pseudoinvexity assumption, (3.1) implies that

p∑
i=1

u∗
i {Di(x

∗)[fi(x)+〈α∗i ,Aix〉]−Ni(x
∗)[gi(x)−〈β∗i , Bix〉]}

+
q∑

j=1

v∗
j [Gj(x)+〈γ ∗j ,Cjx〉]+

r∑
k=1

w∗
kHk(x)

�
p∑

i=1

u∗
i {Di(x

∗)[fi(x
∗)+〈α∗i ,Aix

∗〉]−Ni(x
∗)[gi(x

∗)−〈β∗i , Bix
∗〉]}

+
q∑

j=1

v∗
j [Gj(x

∗)+〈γ ∗j ,Cjx
∗〉]+

r∑
k=1

w∗
kHk(x

∗).

Because x∗ ∈ F and (3.2) and (3.5) hold, the right-hand side of the above
inequality is equal to zero, and hence we have

0�
p∑

i=1

u∗
i {Di(x

∗)[fi(x)+〈α∗i ,Aix〉]−Ni(x
∗)[gi(x)−〈β∗i , Bix〉]}

+
q∑

j=1

v∗
j [Gj(x)+〈γ ∗j ,Cjx〉]

�
p∑

i=1

u∗
i {Di(x

∗)[fi(x)+‖α∗i‖∗
a(i)‖Aix‖a(i)]

−Ni(x
∗)[gi(x)−‖β∗i‖∗

b(i)‖Bix‖b(i)]}

+
q∑

j=1

v∗
j [Gj(x)+‖γ ∗j‖∗

c(j)‖Cjx‖c(j)] (by Lemma 3.1)

�
p∑

i=1

u∗
i {Di(x

∗)[fi(x)+‖Aix‖a(i)]−Ni(x
∗)[gi(x)−‖Bix‖b(i)]}

+
q∑

j=1

v∗
j [Gj(x)+‖Cjx‖c(j)] (by (3.3) and (3.4))

�
p∑

i=1

u∗
i {Di(x

∗)[fi(x)+‖Aix‖a(i)]−Ni(x
∗)[gi(x)−‖Bix‖b(i)]}

(by the feasibility of x),

which is precisely (3.8). As seen in the proof of part (a), this inequality
leads to the desired conclusion that x∗ is an efficient solution of (P ).
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In Theorem 3.1, separate (η, ρ)-invexity assumptions were imposed on
the functions Ai(·, α∗) and Bi(·, β∗), i ∈ p. In the remainder of this sec-
tion, we shall formulate a great variety of sufficient efficiency conditions
in which various generalized (η, ρ)-invexity requirements will be placed on
certain combinations of these functions.

THEOREM 3.2. Let x∗ ∈ F and assume that Ni(x
∗) � 0, i ∈ p, that there

exist u∗ ∈U, v∗ ∈R
q
+, w∗ ∈R

r , α∗i ∈R
�i , β∗i ∈R

mi , i ∈p, and γ ∗j ∈R
nj , j ∈q,

such that (3.1) – (3.5) hold. Assume, furthermore, that any one of the fol-
lowing five sets of hypotheses is satisfied:

(a) (i) E(·, x∗, u∗, α∗, β∗) is (η, ρ̄)-pseudoinvex at x∗;

(ii) for each j ∈J+ ≡J+(v∗), Cj (·, γ ∗) is (η, ρ̂j )-quasiinvex at x∗;

(iii) for each k ∈K∗ ≡K∗(w∗), Dk(·,w∗) is (η, ρ̆k)-quasiinvex at x∗;

(iv) ρ̄ +∑
j∈J+ v∗

j ρ̂j +∑
k∈K∗ ρ̆k �0;

(b) (i) E(·, x∗, u∗, α∗, β∗) is (η, ρ̄)-pseudoinvex at x∗;

(ii) C(·, v∗, γ ∗) is (η, ρ̂)-quasiinvex at x∗;

(iii) for each k ∈K∗, Dk(·,w∗) is (η, ρ̆k)-quasiinvex at x∗;

(iv) ρ̄ + ρ̂ +∑
k∈K∗ ρ̆k �0;

(c) (i) E(·, x∗, u∗, α∗, β∗) is (η, ρ̄)-pseudoinvex at x∗;

(ii) for each j ∈J+, Cj (·, γ ∗) is (η, ρ̂j )-quasiinvex at x∗;

(iii) D(·,w∗) is (η, ρ̆)-quasiinvex at x∗;

(iv) ρ̄ +∑
j∈J+ v∗

j ρ̂j + ρ̆ �0;

(d) (i) E(·, x∗, u∗, α∗, β∗) is (η, ρ̄)-pseudoinvex at x∗;

(ii) C(·, v∗, γ ∗) is (η, ρ̂)-quasiinvex at x∗;

(iii) D(·,w∗) is (η, ρ̆)-quasiinvex at x∗;

(iv) ρ̄ + ρ̂ + ρ̆ �0;

(e) (i) E(·, x∗, u∗, α∗, β∗) is (η, ρ̄)-pseudoinvex at x∗;

(ii) F(·, v∗,w∗, γ ∗) is (η, ρ̃)-quasiinvex at x∗;

(iii) ρ̄ + ρ̃ �0.

Then x∗ is an efficient solution of (P).
Proof. (a): Let x be an arbitrary feasible solution of (P ). Because of our

assumptions specified in (ii) and (iii), (3.6) and (3.7) remain valid for the
present case. Now combining (3.6) and (3.7) with (3.1) and using (iv), we
get

〈 p∑
i=1

u∗
i {Di(x

∗)[∇fi(x
∗)+AT

i α∗i ]−Ni(x
∗)[∇gi(x

∗)−BT
i β∗i ]}, η(x, x∗)

〉
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�
( ∑

j∈J+

v∗
j ρ̃j +

∑
k∈K∗

ρ̆k

)
‖x −x∗‖2 �−ρ̄‖x −x∗‖2,

which in view of (i) implies that E(x, x∗, u∗, α∗, β∗)�E(x∗, x∗, u∗, α∗, β∗)=
0, where the equality follows from the definitions of Di(x

∗) and Ni(x
∗),

i ∈p, and (3.5). Using this inequality, we see that

0�
p∑

i=1

u∗
i {Di(x

∗)[fi(x)+〈α∗i ,Aix〉]−Ni(x
∗)[gi(x)−〈β∗i , Bix〉]}

�
p∑

i=1

u∗
i {Di(x

∗)[fi(x)+‖α∗i‖∗
a(i)‖Aix‖a(i)]

−Ni(x
∗)[gi(x)−‖β∗i‖∗

b(i)‖Bix‖b(i)]} (by Lemma 3.1)

�
p∑

i=1

u∗
i {Di(x

∗)[fi(x)+‖Aix‖a(i)]−Ni(x
∗)[gi(x)−‖Bix‖b(i)]} (by (3.3)),

which is precisely (3.8). As seen in the proof of part (a), this inequality
leads to the desired conclusion that x∗ is an efficient solution of (P ).

(b)–(e): The proofs are similar to that of part (a).

THEOREM 3.3. Let x∗ ∈ F and assume that Ni(x
∗) � 0, i ∈ p, that there

exist u∗ ∈U, v∗ ∈R
q
+, w∗ ∈R

r , α∗i ∈R
�i , β∗i ∈R

mi , i ∈p, and γ ∗j ∈R
nj , j ∈q,

such that (3.1)–(3.5) hold. Assume, furthermore, that any one of the follow-
ing 12 sets of hypotheses is satisfied:

(a) (i) E(·, x∗, u∗, α∗, β∗) is prestrictly (η, ρ̄)-quasiinvex at x∗;

(ii) for each j ∈J+ ≡J+(v∗), Cj (·, γ ∗) is (η, ρ̂j )-quasiinvex at x∗;

(iii) for each k ∈K∗ ≡K∗(w∗), Dk(·,w∗) is (η, ρ̆k)-quasiinvex at x∗;

(iv) ρ̄ +∑
j∈J+ v∗

j ρ̂j +∑
k∈K∗ ρ̆k >0;

(b) (i) E(·, x∗, u∗, α∗, β∗) is prestrictly (η, ρ̄)-quasiinvex at x∗;

(ii) C(·, v∗, γ ∗) is (η, ρ̂)-quasiinvex at x∗;

(iii) for each k ∈K∗, Dk(·,w∗) is (η, ρ̆k)-quasiinvex at x∗;

(iv) ρ̄ + ρ̂ +∑
k∈K∗ ρ̆k >0;

(c) (i) E(·, x∗, u∗, α∗, β∗) is prestrictly (η, ρ̄)-quasiinvex at x∗;

(ii) for each j ∈J+, Cj (·, γ ∗) is (η, ρ̂j )-quasiinvex at x∗;

(iii) D(·,w∗) is (η, ρ̆)-quasiinvex at x∗;

(iv) ρ̄ +∑
j∈J+ v∗

j ρ̂j + ρ̆ >0;

(d) (i) E(·, x∗, u∗, α∗, β∗) is prestrictly (η, ρ̄)-quasiinvex at x∗;

(ii) C(·, v∗, γ ∗) is (η, ρ̂)-quasiinvex at x∗;
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(iii) D(·,w∗) is (η, ρ̆)-quasiinvex at x∗;

(iv) ρ̄ + ρ̂ + ρ̆ >0;

(e) (i) E(·, x∗, u∗, α∗, β∗) is prestrictly (η, ρ̄)-quasiinvex at x∗;

(ii) F(·, v∗,w∗, γ ∗) is (η, ρ̃)-quasiinvex at x∗;

(iii) ρ̄ + ρ̃ >0;

(f) (i) E(·, x∗, u∗, α∗, β∗) is prestrictly (η, ρ̄)-quasiinvex at x∗;

(ii) for each j ∈J+, Cj (·, γ ∗) is strictly (η, ρ̂j )-pseudoinvex at x∗;

(iii) for each k ∈K∗, Dk(·,w∗) is (η, ρ̆k)-quasiinvex at x∗;

(iv) ρ̄ +∑
j∈J+ v∗

j ρ̂j +∑
k∈K∗ ρ̆k �0;

(g) (i) E(·, x∗, u∗, α∗, β∗) is prestrictly (η, ρ̄)-quasiinvex at x∗;

(ii) C(·, v∗, γ ∗) is strictly (η, ρ̂)-pseudoinvex at x∗;

(iii) for each k ∈K∗, Dk(·,w∗) is (η, ρ̆k)-quasiinvex at x∗;

(iv) ρ̄ + ρ̂ +∑
k∈K∗ ρ̆k �0;

(h) (i) E(·, x∗, u∗, α∗, β∗) is prestrictly (η, ρ̄)-quasiinvex at x∗;

(ii) for each j ∈J+, Cj (·, γ ∗) is (η, ρ̂j )-quasiinvex at x∗;

(iii) for each k ∈K∗, Dk(·,w∗) is strictly (η, ρ̆)-pseudoinvex at x∗;

(iv) ρ̄ +∑
j∈J+ v∗

j ρ̂j +∑
k∈K∗ ρ̆k �0;

(i) (i) E(·, x∗, u∗, α∗, β∗) is prestrictly (η, ρ̄)-quasiinvex at x∗;

(ii) for each j ∈J+, Cj (·, γ ∗) is (η, ρ̂j )-quasiinvex at x∗;

(iii) D(·,w∗) is strictly (η, ρ̆)-pseudoinvex at x∗;

(iv) ρ̄ +∑
j∈J+ v∗

j ρ̂j + ρ̆ �0;

(j) (i) E(·, x∗, u∗, α∗, β∗) is prestrictly (η, ρ̄)-quasiinvex at x∗;

(ii) C(·, v∗, γ ∗) is strictly (η, ρ̃)-pseudoinvex at x∗;

(iii) D(·,w∗) is (η, ρ̆)-quasiinvex at x∗;

(iv) ρ̄ + ρ̃ + ρ̆ �0;

(k) (i) E(·, x∗, u∗, α∗, β∗) is prestrictly (η, ρ̄)-quasiinvex at x∗;

(ii) C(·, v∗, γ ∗) is (η, ρ̃)-quasiinvex at x∗;

(iii) D(·,w∗) is strictly (η, ρ̆)-pseudoinvex at x∗;

(iv) ρ̄ + ρ̃ + ρ̆ �0;

(l) (i) E(·, x∗, u∗, α∗, β∗) is prestrictly (η, ρ̄)-quasiinvex at x∗;

(ii) F(·, v∗,w∗, γ ∗) is strictly (η, ρ̃)-pseudoinvex at x∗;

(iii) ρ̄ + ρ̃ �0.

Then x∗ is an efficient solution of (P).
Proof. Let x be an arbitrary feasible solution of (P ).
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(a): Because of our assumptions specified in (ii) and (iii), (3.6) and (3.7)
remain valid for the present case. From (3.1), (3.6), (3.7), and (iv) we
deduce that

〈 p∑
i=1

u∗
i {Di(x

∗)[∇fi(x
∗)+AT

i α∗i ]−Ni(x
∗)[∇gi(x

∗)−BT
i β∗i ]}, η(x, x∗)

〉

�
( ∑

j∈J+

v∗
j ρ̂j +

∑
k∈K∗

ρ̆k

)
‖x −x∗‖2 >−ρ̄‖x −x∗‖2,

which in view of (i) implies that E(x, x∗, u∗, α∗, β∗)�E(x∗, x∗, u∗, α∗, β∗)=0,
where the equality follows from the definitions of Di(x

∗) and Ni(x
∗), i ∈p,

and (3.5). As shown in the proof of Theorem 3.1, this inequality leads to the
conclusion that x∗ is an efficient solution of (P ).

(b)–(e) : The proofs are similar to that of part (a).
(f): As shown in the proof of part (a) of Theorem 3.1, for each j ∈ J+,

we have

Gj(x)+〈γ ∗j ,Cjx〉�Gj(x
∗)+〈γ ∗j ,Cjx

∗〉,

which by (ii) implies that

〈∇Gj(x
∗)+CT

j γ ∗j , η(x, x∗)〉<−ρ̂j‖x −x∗‖2.

As v∗
j �0 for each j ∈q, and v∗

j =0 for each j ∈q\J+, the above inequalities
yield

〈 q∑
j=1

v∗
j [∇Gj(x

∗)+CT
j γ ∗j ], η(x, x∗)

〉
<−

∑
j∈J+

v∗
j ρ̂j‖x −x∗‖2.

Now combining this inequality with (3.7) (which is valid for the present
case because of (iii)) and (3.1), and using (iv), we obtain

〈 p∑
i=1

u∗
i {Di(x

∗)[∇fi(x
∗)+AT

i α∗i ]−Ni(x
∗)[∇gi(x

∗)−BT
i β∗i ]}, η(x, x∗)

〉

>
∑
j∈J+

v∗
j ρ̂j‖x −x∗‖2 �−ρ̄‖x −x∗‖2,

which in view of (i) implies that E(x, x∗, u∗, α∗, β∗)�E(x∗, x∗, u∗, α∗, β∗)=
0. As seen in the proof of Theorem 3.1, this leads to the conclusion that
x∗ is an efficient solution of (P ).

(g)–(l): The proofs are similar to that of part (f).
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THEOREM 3.4. Let x∗ ∈F and assume that Ni(x
∗)�0, i ∈p, and that there

exist u∗ ∈U0, v∗ ∈R
q
+, w∗ ∈R

r , α∗i ∈R
�i , β∗i ∈R

mi , i ∈p, and γ ∗j ∈R
nj , j ∈q,

such that (3.1)–(3.5) hold. Assume, furthermore, that any one of the follow-
ing five sets of hypotheses is satisfied:

(a) (i) for each i ∈ I+ ≡ I+(u∗), Ei(·, x∗, α∗, β∗) is strictly (η, ρ̄i)-
pseudoinvex at x∗;

(ii) for each j ∈J+ ≡J+(v∗), Cj (·, γ ∗) is (η, ρ̂j )-quasiinvex at x∗;

(iii) for each k ∈K∗ ≡K∗(w∗), Dk(·,w∗) is (η, ρ̆k)-quasiinvex at x∗;

(iv) ρ◦ +∑
j∈J+ v∗

j ρ̂j +∑
k∈K∗ ρ̆k �0, where ρ◦ =∑

i∈J+ u∗
i ρ̄i;

(b) (i) for each i ∈I+, Ei(·, x∗, α∗, β∗) is strictly (η, ρ̄i)-pseudoinvex at x∗;

(ii) C(·, v∗, γ ∗) is (η, ρ̂)-quasiinvex at x∗;

(iii) for each k ∈K∗, Dk(·,w∗) is (η, ρ̆k)-quasiinvex at x∗;

(iv) ρ◦ + ρ̂ +∑
k∈K∗ ρ̆k �0;

(c) (i) for each i ∈I+, Ei(·, x∗, α∗, β∗) is strictly (η, ρ̄i)-pseudoinvex at x∗;

(ii) for each j ∈J+, Cj (·, γ ∗) is (η, ρ̂j )-quasiinvex at x∗;

(iii) D(·,w∗) is (η, ρ̆)-quasiinvex at x∗;

(iv) ρ◦ +∑
j∈J+ v∗

j ρ̂j + ρ̆ �0;

(d) (i) for each i ∈I+, Ei(·, x∗, α∗, β∗) is strictly (η, ρ̄i)-pseudoinvex at x∗;

(ii) C(·, v∗, γ ∗) is (η, ρ̂)-quasiinvex at x∗;

(iii) D(·,w∗) is (η, ρ̆)-quasiinvex at x∗;

(iv) ρ◦ + ρ̂ + ρ̆ �0;

(e) (i) for each i ∈I+, Ei(·, x∗, α∗, β∗) is strictly (η, ρ̄i)-pseudoinvex at x∗;

(ii) F(·, v∗,w∗, γ ∗) is (η, ρ̃)-quasiinvex at x∗;

(iii) ρ◦ + ρ̃ �0.

Then x∗ is an efficient solution of (P).
Proof. (a): Suppose to the contrary that x∗ is not an efficient solution of

(P ). Then there is a feasible solution x̄ of (P ) such that ϕ(x̄)�ϕ(x∗). Since
ϕ(x∗)=Ni(x

∗)/Di(x
∗) for each i ∈p, the last inequality implies that

Di(x
∗)[fi(x̄)+‖Aix̄‖a(i)]−Ni(x

∗)[gi(x̄)−‖Bix̄‖b(i)]�0 for each i ∈p,

(3.9)

and

Dm(x∗)[fm(x̄)+‖Amx̄‖a(m)]−Nm(x∗)[gm(x̄)−‖Bmx̄‖b(m)]<0

for some m∈p. (3.10)
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Since for each i ∈p,

Di(x
∗)[fi(x̄)+〈α∗i ,Aix̄〉]−Ni(x

∗)[gi(x̄)−〈β∗i , Bix̄〉]
�Di(x

∗)[fi(x̄)+‖α∗i‖∗
a(i)‖Aix̄‖a(i)]−Ni(x

∗)[gi(x̄)−‖β∗i‖∗
b(i)‖Bix̄‖b(i)]

(by Lemma 3.1)

�Di(x
∗)[fi(x̄)+‖Aix̄‖a(i)]−Ni(x

∗)[gi(x̄)−‖Bix̄‖b(i)] (by (3.3))

it follows from the definitions of Ni(x
∗) and Di(x

∗), i ∈p, (3.5), (3.9), and
(3.10) that

Di(x
∗)[fi(x̄)+〈α∗i ,Aix̄〉]−Ni(x

∗)[gi(x̄)−〈β∗i , Bix̄〉]
�0=Di(x

∗)[fi(x
∗)+〈α∗i ,Aix

∗〉]−Ni(x
∗)[gi(x

∗)−〈β∗i , Bix
∗〉]

for each i ∈p, (3.11)

and

Dm(x∗)[fm(x̄)+〈α∗m,Amx̄〉]−Nm(x∗)[gm(x̄)−〈β∗m,Bmx̄〉]
<0=Dm(x∗)[fm(x∗)+〈α∗m,Amx∗〉]−Nm(x∗)[gm(x∗)−〈β∗m,Bmx∗〉]

for some m∈p. (3.12)

In view of (i), (3.11) and (3.12) imply that for each i ∈ I+,

〈Di(x
∗)[∇fi(x

∗)+AT
i α∗i ]−Ni(x

∗)[∇gi(x
∗)−BT

i β∗i ], η(x̄, x∗)〉
<−ρ̄i‖x̄ −x∗‖2.

Because u∗ �0, u∗
i =0 for each i ∈p\I+, and

∑
i∈I+ u∗

i =1, we deduce from
the above inequalities that

〈 p∑
i=1

u∗
i {Di(x

∗)[∇fi(x
∗)+AT

i α∗i ]−Ni(x
∗)[∇gi(x

∗)−BT
i β∗i ]}, η(x̄, x∗)

〉

<−
∑
i∈I+

u∗
i ρ̄i‖x̄ −x∗‖2. (3.13)

As shown in the proof of Theorem 3.1, our assumptions in (ii) and (iii)
lead to (3.6) and (3.7), respectively, which when combined with (3.1) and
(iv) yield

〈 p∑
i=1

u∗
i {Di(x

∗)[∇fi(x
∗)+AT

i α∗i ]−Ni(x
∗)[∇gi(x

∗)−BT
i β∗i ]}, η(x̄, x∗)

〉

�
( ∑

j∈J+

v∗
j ρ̂j +

∑
k∈K∗

ρ̆k

)
‖x̄ −x∗‖2 �−

∑
i∈I+

u∗
i ρ̄i‖x̄ −x∗‖2,
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which contradicts (3.13). Therefore, we conclude that x∗ is an efficient solu-
tion of (P ).

(b)–(g): The proofs are similar to that of part (a).

THEOREM 3.5. Let x∗ ∈F and assume that Ni(x
∗)�0, i ∈p, and that there

exist u∗ ∈U0, v∗ ∈R
q
+, w∗ ∈R

r , α∗i ∈R
�i , β∗i ∈R

mi , i ∈p, and γ ∗j ∈R
nj , j ∈q,

such that (3.1) – (3.5) hold. Assume, furthermore, that any one of the fol-
lowing 12 sets of hypotheses is satisfied:

(a) (i) for each i ∈I+ ≡I+(u∗), Ei(·, x∗, α∗, β∗) is (η, ρ̄i)-quasiinvex at x∗;

(ii) for each j ∈J+ ≡J+(v∗), Cj (·, γ ∗) is (η, ρ̂j )-quasiinvex at x∗;

(iii) for each k ∈K∗ ≡K∗(w∗), Dk(·,w∗) is (η, ρ̆k)-quasiinvex at x∗;

(iv) ρ◦ +∑
j∈J+ v∗

j ρ̂j +∑
k∈K∗ ρ̆k >0, where ρ◦ =∑

i∈I+ u∗
i ρ̄i;

(b) (i) for each i ∈ I+, Ei(·, x∗, α∗, β∗) is (η, ρ̄i)-quasiinvex at x∗;

(ii) C(·, v∗, γ ∗) is (η, ρ̂)-quasiinvex at x∗;

(iii) for each k ∈K∗, Dk(·,w∗) is (η, ρ̆k)-quasiinvex at x∗;

(iv) ρ◦ + ρ̂ +∑
k∈K∗ ρ̆k >0;

(c) (i) for each i ∈ I+, Ei(·, x∗, α∗, β∗) is (η, ρ̄i)-quasiinvex at x∗;

(ii) for each j ∈J+, Cj (·, γ ∗) is (η, ρ̂j )-quasiinvex at x∗;

(iii) D(·,w∗) is (η, ρ̆)-quasiinvex at x∗;

(iv) ρ◦ +∑
j∈J+ v∗

j ρ̂j + ρ̆ >0;

(d) (i) for each i ∈ I+, Ei(·, x∗, α∗, β∗) is (η, ρ̄i)-quasiinvex at x∗;

(ii) C(·, v∗, γ ∗) is (η, ρ̂)-quasiinvex at x∗;

(iii) D(·,w∗) is (η, ρ̆)-quasiinvex at x∗;

(iv) ρ◦ + ρ̂ + ρ̆ >0;

(e) (i) for each i ∈ I+, Ei(·, x∗, α∗, β∗) is (η, ρ̄i)-quasiinvex at x∗;

(ii) F(·, v∗,w∗, γ ∗) is (η, ρ̃)-quasiinvex at x∗;

(iii) ρ◦ + ρ̃ >0;

(f) (i) for each i ∈ I+, Ei(·, x∗, α∗, β∗) is (η, ρ̄i)-quasiinvex at x∗;

(ii) for each j ∈J+, Cj (·, γ ∗) is strictly (η, ρ̂)-pseudoinvex at x∗;

(iii) for each k ∈K∗, Dk(·,w∗) is (η, ρ̆k)-quasiinvex at x∗;

(iv) ρ◦ +∑
j∈J+ v∗

j ρ̂j +∑
k∈K∗ ρ̆k �0;

(g) (i) for each i ∈ I+, Ei(·, x∗, α∗, β∗) is (η, ρ̄i)-quasiinvex at x∗;

(ii) C(·, v∗, γ ∗) is strictly (η, ρ̂)-pseudoinvex at x∗;

(iii) for each k ∈K∗, Dk(·,w∗) is (η, ρ̆k)-quasiinvex at x∗;

(iv) ρ◦ + ρ̂ +∑
k∈K∗ ρ̆k �0;
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(h) (i) for each i ∈ I+, Ei(·, x∗, α∗, β∗) is (η, ρ̄i)-quasiinvex at x∗;

(ii) for each j ∈J+, Cj (·, γ ∗) is (η, ρ̂j )-quasiinvex at x∗;

(iii) for each k ∈K∗, Dk(·,w∗) is strictly (η, ρ̆k)-pseudoinvex at x∗;

(iv) ρ◦ +∑
j∈J+ v∗

j ρ̂j +∑
k∈K∗ ρ̆k �0;

(i) (i) for each i ∈ I+, Ei(·, x∗, α∗, β∗) is (η, ρ̄i)-quasiinvex at x∗;

(ii) for each j ∈J+, Cj (·, γ ∗) is (η, ρ̂j )-quasiinvex at x∗;

(iii) D(·,w∗) is strictly (η, ρ̆)-pseudoinvex at x∗;

(iv) ρ◦ +∑
j∈J+ v∗

j ρ̂j + ρ̆ �0;

(j) (i) for each i ∈ I+, Ei(·, x∗, α∗, β∗) is (η, ρ̄i)-quasiinvex at x∗;

(ii) C(·, v∗, γ ∗) is strictly (η, ρ̃)-pseudoinvex at x∗;

(iii) D(·,w∗) is (η, ρ̆)-quasiinvex at x∗;

(iv) ρ◦ + ρ̃ + ρ̆ �0;

(k) (i) for each i ∈ I+, Ei(·, x∗, α∗, β∗) is (η, ρ̄i)-quasiinvex at x∗;

(ii) C(·, v∗, γ ∗) is (η, ρ̃)-quasiinvex at x∗;

(iii) D(·,w∗) is strictly (η, ρ̆)-pseudoinvex at x∗;

(iv) ρ◦ + ρ̃ + ρ̆ �0;

(l) (i) for each i ∈ I+, Ei(·, x∗, α∗, β∗) is (η, ρ̄i)-quasiinvex at x∗;

(ii) F(·, v∗,w∗, γ ∗) is strictly (η, ρ̃)-pseudoinvex at x∗;

(iii) ρ◦ + ρ̃ �0.

Then x∗ is an efficient solution of (P).
Proof. (a): Suppose to the contrary that x∗ is not an efficient solution of

(P ). As shown in the proof of Theorem 3.4, this supposition leads to the
inequalities (3.11) and (3.12) for some x̄ ∈F. In view of (i), this implies that
for each i ∈p,

〈Di(x
∗)[∇fi(x

∗)+AT
i α∗i ]−Ni(x

∗)[∇gi(x
∗)−BT

i β∗i ], η(x̄, x∗)〉
�−ρ̄i‖x̄ −x∗‖2.

Since I+ 
=∅ and for i ∈p\I+, u∗
i =0 and

∑
i∈I+ u∗

i =1, the above inequalities
yield

〈 p∑
i=1

u∗
i {Di(x

∗)[∇fi(x
∗)+AT

i α∗i ]−Ni(x
∗)[∇gi(x

∗)−BT
i β∗i ]}, η(x̄, x∗)

〉

�−
∑
i∈I+

u∗
i ρ̄i‖x̄ −x∗‖2. (3.14)

As shown in the proof of Theorem 3.1, our assumptions in (ii) and (iii) lead
to (3.6) and (3.7), respectively, which when combined with (3.1) and (iv) yield
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〈 p∑
i=1

u∗
i {Di(x

∗)[∇fi(x
∗)+AT

i α∗i ]−Ni(x
∗)[∇gi(x

∗)−BT
i β∗i ]}, η(x̄, x∗)

〉

>−
∑
i∈I+

u∗
i ρ̄i‖x̄ −x∗‖2.

which contradicts (3.14). Hence x∗ is an efficient solution of (P ).
(b)–(l): The proofs are similar to that of part (a).

4. Generalized Sufficient Efficiency Criteria

In this section, we discuss several families of sufficient efficiency results
under various generalized (η, ρ)-invexity hypotheses imposed on certain
combinations of the problem functions. This is accomplished by employ-
ing a certain type of partitioning scheme which was originally proposed in
[13] for the purpose of constructing generalized dual problems for nonlin-
ear programming problems. For this we need some additional notation.

Let {J0, J1, . . . , Jm} and {K0,K1, . . . ,Km} be partitions of the index sets
q and r, respectively; thus, Jµ ⊂q for each µ∈m∪{0}, Jµ ∩Jν =∅ for each
µ,ν ∈m∪{0} with µ 
=ν, and ∪m

µ=0Jµ =q. Obviously, similar properties hold
for {K0,K1, . . . ,Km}. Moreover, if m1 and m2 are the numbers of the par-
titioning sets of q and r, respectively, then m=max{m1,m2} and Jµ =∅ or
Kµ =∅ for µ>min{m1,m2}

In addition, we use the real-valued functions �i(·, y, v,w,α,β, γ ),
�(·, y, u, v,w,α,β, γ ), and �t(·, v,w, γ ) defined, for fixed y,u, v,w,α,β,
and γ , on X as follows:

�i(x, y, v,w,α,β, γ )=Di(y)[fi(x)+〈αi,Aix〉]−Ni(y)[gi(x)−〈βi,Bix〉]
+

∑
j∈J0

vj [Gj(x)+〈γ j ,Cjx〉]+
∑
k∈K0

wkHk(x), i ∈p,

�(x, y, u, v,w,α,β, γ )=
p∑

i=1

ui{Di(y)[fi(x)+〈αi,Aix〉]

−Ni(y)[gi(x)−〈βi,Bix〉]}
+

∑
j∈J0

vj [Gj(x)+〈γ j ,Cjx〉]+
∑
k∈K0

wkHk(x)

�t(x, v,w, γ )=
∑
j∈Jt

vj [Gj(x)+〈γ j ,Cjx〉]+
∑
k∈Kt

wkHk(x), t ∈m.
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Making use of the sets and functions defined above, we can now formulate
our first collection of generalized sufficiency results for (P ) as follows.

THEOREM 4.1. Let x∗ ∈F and assume that Ni(x
∗)�0, i ∈p, and that there

exist u∗ ∈U, v∗ ∈R
q
+, w∗ ∈R

r , α∗i ∈R
�i , β∗i ∈R

mi , i ∈p, and γ ∗j ∈R
nj , j ∈q,

such that (3.1) – (3.5) hold. Assume, furthermore, that any one of the fol-
lowing four sets of hypotheses is satisfied:

(a) (i) �(·, x∗, u∗, v∗,w∗, α∗, β∗, γ ∗) is prestrictly (η, ρ̄)-quasiinvex at
x∗;

(ii) for each t ∈ m, �t(·, v∗,w∗, γ ∗) is strictly (η, ρ̃t )-pseudoinvex at
x∗;

(iii) ρ̄ +∑m
t=1 ρ̃t �0;

(b) (i) �(·, x∗, u∗, v∗,w∗, α∗, β∗, γ ∗) is (η, ρ̄)-pseudoinvex at x∗;

(ii) for each t ∈m, �t(·, v∗,w∗, γ ∗) is (η, ρ̃t )-quasiinvex at x∗;

(iii) ρ̄ +∑m
t=1 ρ̃t �0;

(c) (i) �(·, x∗, u∗, v∗,w∗, α∗, β∗, γ ∗) is prestrictly (η, ρ̄)-quasiinvex at
x∗;

(ii) for each t ∈m, �t(·, v∗,w∗, γ ∗) is (η, ρ̃t )-quasiinvex at x∗;

(iii) ρ̄ +∑m
t=1 ρ̃t >0;

(d) (i) �(·, x∗, u∗, v∗,w∗, α∗, β∗, γ ∗) is prestrictly (η, ρ̄)-quasiinvex at
x∗;

(ii) for each t ∈ m1, �t(·, v∗,w∗, γ ∗) is (η, ρ̃t )-quasiinvex at x∗, and
for each t ∈ m2 
=∅, �t(·, v∗,w∗, γ ∗) is strictly (η, ρ̃t )-pseudoinvex
at x∗, where {m1,m2} is a partition of m;

(iii) ρ̄ +∑m
t=1 ρ̃t �0.

Then x∗ is an efficient solution of (P ).
Proof. Let x be an arbitrary feasible solution of (P ).
(a): It is clear that (3.1) can be expressed as follows:

p∑
i=1

u∗
i {Di(x

∗)[∇fi(x
∗)+AT

i α∗i ]−Ni(x
∗)[∇gi(x

∗)−BT
i β∗i ]}

+
∑
j∈J0

v∗
j [∇Gj(x

∗)+CT
j γ ∗j ]+

∑
k∈K0

w∗
k∇Hk(x

∗)

+
m∑

t=1

{∑
j∈Jt

v∗
j [∇Gj(x

∗)+CT
j γ ∗j ]+

∑
k∈Kt

w∗
k∇Hk(x

∗)
}

=0. (4.1)

Since for each t ∈m,
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�t(x, v∗,w∗, γ ∗)
=

∑
j∈Jt

v∗
j [Gj(x)+〈γ ∗,Cjx〉]+

∑
k∈Kt

w∗
kHk(x)

�
∑
j∈Jt

v∗
j [Gj(x)+‖γ ∗‖∗

c(j)‖Cjx‖c(j)]+
∑
k∈Kt

w∗
kHk(x)

(by Lemma 3.1 and nonnegativity of v∗)

�
∑
j∈Jt

v∗
j [Gj(x)+‖Cjx‖c(j)]+

∑
k∈Kt

w∗
kHk(x)

(by (3.4) and nonnegativity of v∗)

�0 (by the feasibility of x and nonnegativity of v∗)

=
∑
j∈Jt

v∗
j [Gj(x

∗)+〈γ ∗j ,Cjx
∗〉]+

∑
k∈Kt

w∗
kHk(x

∗)

(by (3.2) and feasibility of x∗)

=�t(x
∗, v∗,w∗, γ ∗),

it follows from (ii) that
〈∑

j∈Jt

v∗
j [∇Gj(x

∗)+CT
j γ ∗j ]+

∑
k∈Kt

w∗
k∇Hk(x

∗), η(x, x∗)
〉
<−ρ̃t‖x −x∗‖2.

Summing over t , we obtain

〈 m∑
t=1

{∑
j∈Jt

v∗
j [∇Gj(x

∗)+CT
j γ ∗j ]+

∑
k∈Kt

w∗
k∇Hk(x

∗)
}
, η(x, x∗)

〉

<−
m∑

t=1

ρ̃t‖x −x∗‖2. (4.2)

Combining (4.1) and (4.2), and using (iii) we get

〈 p∑
i=1

u∗
i {Di(x

∗)[∇fi(x
∗)+AT

i α∗i ]−Ni(x
∗)[∇gi(x

∗)−BT
i β∗iT ]}

+
∑
j∈J0

v∗
j [∇Gj(x

∗)+CT
j γ ∗jT ]

+
∑
k∈K0

w∗
k∇Hk(x

∗), η(x, x∗)
〉
>

m∑
t=1

ρ̃t‖x −x∗‖2 �−ρ̄‖x −x∗‖2, (4.3)

which by virtue of (i) implies that �(x, x∗, u∗, v∗,w∗, α∗, β∗, γ ∗) �
�(x∗, x∗, u∗, v∗,w∗, α∗, β∗, γ ∗)=0, where the equality follows from the defi-
nitions of Ni(x

∗) and Di(x
∗), i ∈ p, (3.2), (3.5), and feasibility of x∗.
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Therefore, bearing in mind that u∗ > 0, Ni(x
∗) � 0, Di(x

∗) > 0, i ∈ p, and
v∗ �0, we have

0��(x, x∗, u∗, v∗,w∗, α∗, β∗, γ ∗)

�
p∑

i=1

u∗
i {Di(x

∗)[fi(x)+‖α∗i‖∗
a(i)‖Aix‖a(i)]

−Ni(x
∗)[gi(x)−‖β∗i‖∗

b(i)‖Bix‖b(i)]}
+

∑
j∈J0

v∗
j [Gj(x)+‖γ ∗j‖∗

c(j)‖Cjx‖c(j)]

(by Lemma 3.1 and feasibility of x)

�
p∑

i=1

u∗
i {Di(x

∗)[fi(x)+‖Aix‖a(i)]−Ni(x
∗)[gi(x)−‖Bix‖b(i)]}

+
∑
j∈J0

v∗
j [Gj(x)+‖Cjx‖c(j)] (by (3.3) and (3.4))

�
p∑

i=1

u∗
i {Di(x

∗)[fi(x)+‖Aix‖a(i)]−Ni(x
∗)[gi(x)−‖Bix‖b(i)]}

(by the feasibility of x),

which is precisely (3.8). In the proof of part (a) of Theorem 3.1 it was
shown that this inequality leads to the conclusion that x∗ is an efficient
solution of (P ).

(b): Proceeding as in the proof of part (a), we see that (ii) leads to the
following inequality:

〈 m∑
t=1

{∑
j∈Jt

v∗
j [∇Gj(x

∗)+CT
j γ ∗j ]+

∑
k∈Kt

w∗
k∇Hk(x

∗)
}
, η(x, x∗)

〉

�−
m∑

t=1

ρ̃t‖x −x∗‖2.

Now combining this inequality with (4.1) and using (iii), we obtain

〈 p∑
i=1

u∗
i {Di(x

∗)[∇fi(x
∗)+AT

i α∗i ]−Ni(x
∗)[∇gi(x

∗)−BT
i β∗iT ]}

+
∑
j∈J0

v∗
j [∇Gj(x

∗)+CT
j γ ∗jT ]

+
∑
k∈K0

w∗
k∇Hk(x

∗), η(x, x∗)
〉
�

m∑
t=1

ρ̃t‖x −x∗‖2 �−ρ̄‖x −x∗‖2,
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which by virtue of (i) implies that �(x, x∗, u∗, v∗,w∗, α∗, β∗, γ ∗) �
�(x∗, x∗, u∗, v∗,w∗, α∗, β∗, γ ∗). The rest of the proof is identical to that of
part (a).

(c) and (d): The proofs are similar to those of parts (a) and (b).

THEOREM 4.2. Let x∗ ∈F and assume that Ni(x
∗)�0, i ∈p, and that there

exist u∗ ∈U0, v∗ ∈R
q
+, w∗ ∈R

r , α∗i ∈R
�i , β∗i ∈R

mi , i ∈p, and γ ∗j ∈R
nj , j ∈q,

such that (3.1)–(3.5) hold. Assume, furthermore, that any one of the follow-
ing seven sets of hypotheses is satisfied:

(a) (i) for each i ∈ I+ ≡ I+(u∗), �i(·, x∗, v∗,w∗, α∗, β∗, γ ∗) is strictly
(η, ρ̄i)-pseudoinvex at x∗;

(ii) for each t ∈m, �t(·, v∗,w∗, γ ∗) is (η, ρ̃t )-quasiinvex at x∗;

(iii)
∑

i∈I+ u∗
i ρ̄i +

∑m
t=1 ρ̃t �0;

(b) (i) for each i ∈ I+, �i(·, x∗, v∗,w∗, α∗, β∗, γ ∗) is prestrictly (η, ρ̄i)-
quasiinvex at x∗;

(ii) for each t ∈ m, �t(·, v∗,w∗, γ ∗) is strictly (η, ρ̃t )-pseudoinvex at
x∗;

(iii)
∑

i∈I+ u∗
i ρ̄i +

∑m
t=1 ρ̃t �0;

(c) (i) for each i ∈ I+, �i(·, x∗, v∗,w∗, α∗, β∗, γ ∗) is prestrictly (η, ρ̄i)-
quasiinvex at x∗;

(ii) for each t ∈m, �t(·, v∗,w∗, γ ∗) is (η, ρ̃t )-quasiinvex at x∗;

(iii)
∑

i∈I+ u∗
i ρ̄i +

∑m
t=1 ρ̃t >0;

(d) (i) for each i ∈ I1+, �i(·, x∗, v∗,w∗, α∗, β∗, γ ∗) is strictly (η, ρ̄i)-
pseudoinvex at x∗, and for each i ∈I2+, �i(·, x∗, v∗,w∗, α∗, β∗, γ ∗)
is prestrictly (η, ρ̄i)-quasiinvex at x∗, where {I1+, I2+} is a parti-
tion of I+;

(ii) for each t ∈ m, �t(·, v∗,w∗, γ ∗) is strictly (η, ρ̃t )-pseudoinvex at
x∗;

(iii)
∑

i∈I+ u∗
i ρ̄i +

∑m
t=1 ρ̃t �0;

(e) (i) for each i ∈ I1+ 
= ∅, �i(·, x∗, v∗,w∗, α∗, β∗, γ ∗) is strictly (η, ρ̄i)-
pseudoinvex at x∗, and for each i ∈I2+, �i(·, x∗, v∗,w∗, α∗, β∗, γ ∗)
is prestrictly (η, ρ̄i)-quasiinvex at x∗, where {I1+, I2+} is a parti-
tion of I+;

(ii) for each t ∈m, �t(·, v∗,w∗, γ ∗) is (η, ρ̃t )-quasiinvex at x∗;

(iii)
∑

i∈I+ u∗
i ρ̄i +

∑m
t=1 ρ̃t �0;

(f) (i) for each i ∈ I+, �i(·, x∗, v∗,w∗, α∗, β∗, γ ∗) is prestrictly (η, ρ̄i)-
quasiinvex at x∗;
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(ii) for each t ∈m1 
= ∅, �t(·, v∗,w∗, γ ∗) is strictly (η, ρ̃t )-pseudoinvex
at x∗, and for each t ∈m2, �t(·, v∗,w∗, γ ∗) is (η, ρ̃t )-quasiinvex at
x∗, where {m1,m2} is a partition of m;

(iii)
∑

i∈I+ u∗
i ρ̄i +

∑m
t=1 ρ̃t �0;

(g) (i) for each i ∈ I1+, �i(·, x∗, v∗,w∗, α∗, β∗, γ ∗) is strictly (η, ρ̄i)-
pseudoinvex at x∗, and for each i ∈I2+, �i(·, x∗, v∗,w∗, α∗, β∗, γ ∗)
is prestrictly (η, ρ̄i)-quasiinvex at x∗, where {I1+, I2+} is a parti-
tion of I+;

(ii) for each t ∈ m1, �t(·, v∗,w∗, γ ∗) is strictly (η, ρ̃t )-pseudoinvex at
x∗, and for each t ∈ m2, �t(·, v∗,w∗, γ ∗) is (η, ρ̃t )-quasiinvex at
x∗, where {m1,m2} is a partition of m;

(iii)
∑

i∈I+ u∗
i ρ̄i +

∑m
t=1 ρ̃t �0;

(iv) I1+ 
=∅, m1 
=∅, or
∑

i∈I+ u∗
i ρ̄i +

∑m
t=1 ρ̃t >0.

Then x∗ is an efficient solution of (P).
Proof. (a): Suppose to the contrary that x∗ is not an efficient solution of

(P ). As shown in the proof of Theorem 3.4, this supposition leads to (3.9)
and (3.10) for some x̄ ∈F. Keeping in mind that Ni(x

∗)�0, Di(x
∗)>0, i ∈

p, and v∗ �0, we see that for each i ∈ I+,

�i(x̄, x∗, v∗,w∗, α∗, β∗, γ ∗)

�Di(x
∗)[fi(x̄)+‖α∗i‖∗

a(i)‖Aix̄‖a(i)]−Ni(x
∗)[gi(x̄)−‖β∗i‖∗

b(i)‖Bix̄‖b(i)]

+
∑
j∈J0

v∗
j [Gj(x̄)+‖γ ∗j‖∗

c(j)‖Cj x̄‖c(j)]

(by Lemma 3.1 and feasibility of x̄)

�Di(x
∗)[fi(x̄)+‖Aix̄‖a(i)]−Ni(x

∗)[gi(x̄)−‖Bix̄‖b(i)]

+
∑
j∈J0

v∗
j [Gj(x̄)+‖Cj x̄‖c(j)] (by (3.3) and (3.4))

�Di(x
∗)[fi(x̄)+‖Aix̄‖a(i)]−Ni(x

∗)[gi(x̄)−‖Bix̄‖b(i)]

(by the feasibility of x̄)

�0 (by (3.9) and (3.10))

=Di(x
∗)[fi(x

∗)+〈α∗i ,Aix
∗〉]−Ni(x

∗)[gi(x
∗)−〈β∗i , Bix

∗〉]
+

∑
j∈J0

v∗
j [Gj(x

∗)+〈γ ∗j ,Cjx
∗〉]

+
∑
k∈K0

w∗
kHk(x

∗) (by the definitions of Ni(x
∗) and Di(x

∗),
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i ∈p, (3.2), (3.5), and feasibility of x∗)
=�i(x

∗, x∗, v∗,w∗, α∗, β∗, γ ∗),

which in view of (i) implies that for each i ∈ I+,
〈
Di(x

∗)[∇fi(x
∗)+AT

i α∗i ]−Ni(x
∗)[∇gi(x

∗)−BT
i β∗i ]+

∑
j∈J0

v∗
j [∇Gj(x

∗)

+CT
j γ ∗j ]+

∑
k∈K0

w∗
k∇Hk(x

∗), η(x̄, x∗)
〉
<−ρ̄i‖x̄ −x∗‖2.

Since u∗ �0, u∗
i =0 for each i ∈p\I+, and

∑p

i=1 u∗
i =1, the above inequali-

ties yield

〈 p∑
i=1

u∗
i {Di(x

∗)[∇fi(x
∗)+AT

i α∗i ]−Ni(x
∗)[∇gi(x

∗)−BT
i β∗i ]}

+
∑
j∈J0

v∗
j [∇Gj(x

∗)+CT
j γ ∗j ]

+
∑
k∈K0

w∗
k∇Hk(x

∗), η(x̄, x∗)
〉
<−

∑
i∈I+

u∗
i ρ̄i‖x̄ −x∗‖2. (4.4)

As seen in the proof of Theorem 4.1, our assumptions in (ii) lead to

〈 m∑
t=1

{∑
j∈Jt

v∗
j [∇Gj(x

∗)+CT
j γ ∗j ]+

∑
k∈Kt

w∗
k∇Hk(x

∗)
}
, η(x̄, x∗)

〉

�−
m∑

t=1

ρ̃t‖x̄ −x∗‖2,

which when combined with (4.1), results into

〈 p∑
i=1

u∗
i {Di(x

∗)[∇fi(x
∗)+AT

i α∗i ]−Ni(x
∗)[∇gi(x

∗)−BT
i β∗i ]}

+
∑
j∈J0

v∗
j [∇Gj(x

∗)+CT
j γ ∗j ]

+
∑
k∈K0

w∗
k∇Hk(x

∗), η(x̄, x∗)
〉
�

m∑
t=1

ρ̃t‖x̄ −x∗‖2.

In view of (iii), this inequality contradicts (4.4). Hence, x∗ is an efficient
solution of (P ).

(b)–(g): The proofs are similar to that of part (a).
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In the remainder of this section we present another collection of
sufficiency results which are somewhat different from those stated in Theo-
rems 4.1 and 4.2. These results are formulated by utilizing a partition of
p in addition to those of q and r, and by placing appropriate general-
ized (η, ρ)-invexity requirements on certain combinations of the functions
Ei(·, x∗, α, β), i ∈ p, Gj , j ∈ q, and Hk, k ∈ r. The particular partitioning
method used here was originally utilized by Yang [19] for constructing a
general dual problem for a multiobjective fractional programming problem.

Let {I0, I1, . . . , I�} be a partition of p such that L={0,1,2, . . . , �}⊂M =
{0,1, . . . ,m}, and let the function �t(·, y, u, v,w,α,β, γ ):X→R be defined,
for fixed y,u, v,w,α,β, and γ , by

�t(x, y, u, v,w,α,β, γ )=
∑
i∈It

ui{Di(y)[fi(x)+〈αi,Aix〉]

−Ni(y)[gi(x)−〈βi,Bix〉]}
+

∑
j∈Jt

vj [Gj(x)+〈γ j ,Cjx〉]+
∑
k∈Kt

wkHk(x), t ∈m.

THEOREM 4.3. Let x∗ ∈F and assume that Ni(x
∗)�0, i ∈p, and that there

exist u∗ ∈U, v∗ ∈R
q
+, w∗ ∈R

r , α∗i ∈R
�i , β∗i ∈R

mi , i ∈p, and γ ∗j ∈R
nj , j ∈q,

such that (3.1)–(3.5) hold. Assume, furthermore, that any one of the follow-
ing seven sets of hypotheses is satisfied:

(a) (i) for each t ∈ L, �t(·, x∗, u∗, v∗,w∗, α∗, β∗, γ ∗) is strictly (η, ρt )-
pseudoinvex at x∗;

(ii) for each t ∈M \L,�t(·, v∗,w∗, γ ∗) is (η, ρt )-quasiinvex at x∗;

(iii)
∑

t∈M ρt �0;

(b) (i) for each t ∈L, �t(·, x∗, u∗, v∗,w∗, α∗, β∗, γ ∗) is prestrictly (η, ρt )-
quasiinvex at x∗;

(ii) for each t ∈ M \ L, �t(·, v∗,w∗, γ ∗) is strictly (η, ρt )-pseudoinvex
at x∗;

(iii)
∑

t∈M ρt �0;

(c) (i) for each t ∈L, �t(·, x∗, u∗, v∗,w∗, α∗, β∗, γ ∗) is prestrictly (η, ρt )-
quasiinvex at x∗;

(ii) for each t ∈M \L, �t(·, v∗,w∗, γ ∗) is (η, ρt )-quasiinvex at x∗;

(iii)
∑

t∈M ρt >0;

(d) (i) for each t ∈ L1, �t(·, x∗, u∗, v∗,w∗, α∗, β∗, γ ∗) is strict-
ly (η, ρt )-pseudoinvex at x∗, and for each t ∈ L2, �t(·, x∗,
u∗, v∗,w∗, α∗, β∗, γ ∗) is prestrictly (η, ρt )-quasiinvex at x∗, where
{L1,L2} is a partition of L;
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(ii) for each t ∈ M \ L, �t(·, v∗,w∗, γ ∗) is strictly (η, ρt )-pseudoinvex
at x∗;

(iii)
∑

t∈M ρt �0;

(e) (i) for each t ∈ L1 
= ∅, �t(·, x∗, u∗, v∗,w∗, α∗, β∗, γ ∗) is strict-
ly (η, ρt )-pseudoinvex at x∗, and for each t ∈ L2, �t(·, x∗,
u∗, v∗,w∗, α∗, β∗, γ ∗) is prestrictly (η, ρt )-quasiinvex at x∗, where
{L1,L2} is a partition of L;

(ii) for each t ∈M \L,�t(·, v∗,w∗, γ ∗) is (η, ρt )-quasiinvex at x∗;

(iii)
∑

t∈M ρt �0;

(f) (i) for each t ∈L, �t(·, x∗, u∗, v∗,w∗, α∗, β∗, γ ∗) is prestrictly (η, ρt )-
quasiinvex at x∗;

(ii) for each t ∈ (M \ L)1 
= ∅, �t(·, v∗,w∗, γ ∗) is strictly (η, ρt )-
pseudoinvex at x∗, and for each t ∈ (M \ L)2, �t(·, v∗,w∗, γ ∗) is
(η, ρt )-quasiinvex at x∗, where {(M \ L)1, (M \ L)2} is a partition
of M \L;

(iii)
∑

t∈M ρt �0;

(g) (i) for each t ∈ L1, �t(·, x∗, u∗, v∗,w∗, α∗, β∗, γ ∗) is strict-
ly (η, ρt )-pseudoinvex at x∗, and for each t ∈ L2, �t(·, x∗,
u∗, v∗,w∗, α∗, β∗, γ ∗) is prestrictly (η, ρt )-quasiinvex at x∗, where
{L1,L2} is a partition of L;

(ii) for each t ∈ (M \ L)1, �t(·, v∗,w∗, γ ∗) is strictly (η, ρt )-
pseudoinvex at x∗, and for each t ∈ (M \ L)2, �t(·, v∗,w∗, γ ∗)
is (η, ρt )-quasiinvex at x∗, where {(M \ L)1, (M \ L)2} is a
partition of M \L;

(iii)
∑

t∈M ρt �0;

(iv) L1 
=∅, (M \L)1 
=∅, or
∑

t∈M ρt >0.

Then x∗ is an efficient solution of (P).
Proof. (a): Suppose to the contrary that x∗ is not an efficient solution of

(P ). As seen in the proof of Theorem 3.4, this supposition leads to the
inequalities

Di(x
∗)[fi(x̄)+‖Aix̄‖a(i)]−Ni(x

∗)[gi(x̄)−‖Bix̄‖b(i)]�0, i ∈p,

with strict inequality holding for at least one index m∈p, for some x̄ ∈F.
Therefore, for each t ∈L,

∑
i∈It

u∗
i {Di(x

∗)[fi(x̄)+‖Aix̄‖a(i)]−Ni(x
∗)[gi(x̄)−‖Bix̄‖b(i)]}�0, (4.5)
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Now using this inequality, we see that

�t(x̄, x∗, u∗, v∗,w∗, α∗, β∗, γ ∗)
�

∑
i∈It

u∗
i {Di(x

∗)[fi(x̄)+‖α∗i‖∗
a(i)‖Aix̄‖a(i)]

−Ni(x
∗)[gi(x̄)−‖β∗i‖∗

b(i)‖Bix̄‖b(i)]}+
∑
j∈Jt

v∗
j [Gj(x̄)+‖γ ∗j‖∗

c(j)‖Cjx‖c(j)]

(by Lemma 3.1 and feasibility of x̄)

�
∑
i∈It

u∗
i {Di(x

∗)[fi(x̄)+‖Aix̄‖a(i)]−Ni(x
∗)[gi(x̄)−‖Bix̄‖b(i)]}

+
∑
j∈Jt

v∗
j [Gj(x̄)+‖Cj x̄‖c(j)] (by (3.3) and (3.4))

�
∑
i∈It

u∗
i {Di(x

∗)[fi(x̄)+‖Aix̄‖a(i)]−Ni(x
∗)[gi(x̄)−‖Bix̄‖b(i)]}

(by the feasibility of x̄)

�0 (by (4.5))

=
∑
i∈It

u∗
i {Di(x

∗)[fi(x
∗)+〈α∗i ,Aix

∗〉]−Ni(x
∗)[gi(x

∗)−〈β∗i , Bix
∗〉]}

+
∑
j∈Jt

v∗
j [Gj(x

∗)+〈γ ∗j ,Cjx
∗〉]

+
∑
k∈Kt

w∗
kHk(x

∗) (by the definitions of Di(x
∗) and Ni(x

∗),

i ∈p, (3.2), (3.5), and feasibility of x∗)

=�t(x
∗, x∗, u∗, v∗,w∗, α∗, β∗, γ ∗),

which in view of (i) implies that

〈∑
i∈It

u∗
i {Di(x

∗)[∇fi(x
∗)+AT

i α∗i ]−Ni(x
∗)[∇gi(x

∗)−BT
i β∗i ]}

+
∑
j∈Jt

v∗
j [∇Gj(x

∗)+CT
j γ ∗j ]

+
∑
k∈Kt

w∗
k∇Hk(x

∗), η(x̄, x∗)
〉
<−ρt‖x̄ −x∗‖2.

Adding the above inequalities, we get

〈 p∑
i=1

u∗
i {Di(x

∗)[∇fi(x
∗)+AT

i α∗i ]−Ni(x
∗)[∇gi(x

∗)−BT
i β∗i ]}
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+
∑
t∈L

{∑
j∈Jt

v∗
j [∇Gj(x

∗)+CT
j γ ∗j ]

+
∑
k∈Kt

w∗
k∇Hk(x

∗)
}
, η(x̄, x∗)

〉
<−

∑
t∈L

ρt‖x̄ −x∗‖2. (4.6)

As shown in the proof of Theorem 4.1, for each t ∈M\L, �t(x̄, v∗,w∗, γ ∗)�
�t(x

∗, v∗,w∗, γ ∗), which in view of (ii) implies that

〈∑
j∈Jt

v∗
j [∇Gj(x

∗)+CT
j γ ∗j ]+

∑
k∈Kt

w∗
k∇Hk(x

∗), η(x̄, x∗)
〉
�−ρt‖x̄ −x∗‖2.

Summing over t , we obtain

〈 ∑
t∈M\L

{∑
j∈Jt

v∗
j [∇Gj(x

∗)+CT
j γ ∗j ]+

∑
k∈Kt

w∗
k∇Hk(x

∗)
}
, η(x̄, x∗)

〉

�−
∑

t∈M\L
ρt‖x̄ −x∗‖2. (4.7)

Now combining (4.6) and (4.7) and using (iii), we obtain

〈 p∑
i=1

u∗
i {Di(x

∗)[∇fi(x
∗)+AT

i α∗i ]−Ni(x
∗)[∇gi(x

∗)−BT
i β∗i ]}

+
q∑

j=1

v∗
j [∇Gj(x

∗)+CT
j γ ∗j ]

+
r∑

k=1

w∗
k∇Hk(x

∗), η(x̄, x∗)
〉
<−

m∑
t=1

ρt‖x̄ −x∗‖2 �0,

which contradicts (3.1). Therefore, x∗ is an efficient solution of (P ).
(b)–(g): The proofs are similar to that of part (a).

Each one of the 18 sets of conditions given in Theorems 4.1–4.3 can
be viewed as a family of sufficient efficiency conditions whose members
can easily be identified by appropriate choices of the partitioning sets
Jµ, Kµ, µ ∈ m ∪ {0}, and Iν, ν ∈ � ∪ {0}. These sufficiency conditions along
with their numerous special cases and variants provide a multitude of
global optimality and efficiency criteria for several classes of single- and
multiple-objective nonlinear programming problems with and without arbi-
trary norms and square roots of positive semidefinite quadratic forms.
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5. Concluding Remarks

In this paper, we have established, in a unified framework, a fairly large
number of sets of global semiparametric sufficient efficiency conditions
under a variety of generalized (η, ρ)-invexity assumptions for a multiob-
jective fractional programming problem containing arbitrary norms (and
square roots of positive semidefinite quadratic forms). Each one of these
sufficiency results can easily be modified and restated for each one of the
ten special cases of the prototype problem (P ) designated as (P 1)–(P 10)

in Section 1, and hence they collectively subsume a truly vast number of
sufficient optimality and efficiency results previously established by differ-
ent methods for various classes of nonlinear programming problems with
multiple, fractional, and conventional objective functions. Furthermore, the
style and techniques employed in this paper can be utilized for develop-
ing similar results for some other classes of optimization problems involv-
ing more general types of convex functions. These include discrete and
continuous minmax fractional programming problems, various classes of
semiinfinite programming problems, and certain types of continuous-time
programming problems.
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des Mathématiques Pures et Appliquées 38, 125–172.

5. Hanson, M.A. (1981), On sufficiency of the Kuhn-Tucker conditions, Journal of Math-
ematical Analysis and Applications 80, 545–550.

6. Hanson, M.A. and Mond, B. (1982), Further generalizations of convexity in
mathematical programming, Journal of Information and Optimization Sciences 3, 25–32.

7. Horn, R.A. and Johnson, C.R. (1985), Matrix Analysis, Cambridge University Press,
New York.

8. Jeyakumar, V. (1985), Strong and weak invexity in mathematical programming, Methods
of Operations Research 55, 109–125.

9. Kanniappan, P. and Pandian, P. (1996), On generalized convex functions in optimization
theory – A survey, Opsearch 33, 174–185.

10. Martin, D.H. (1985), The essence of invexity, Journal of Optimization Theory and Appli-
cations 47, 65–76.

11. Miettinen, K.M. (1999), Nonlinear Multiobjective Optimization, Kluwer Academic Pub-
lishers, Boston.

12. Mititelu, S. and Stancu-Minasian, I.M. (1993), Invexity at a point: generalizations and
classification, Bulletin of the Australian Mathematical Society 48, 117–126.



GLOBAL SEMIPARAMETRIC SUFFICIENT EFFICIENCY CONDITIONS 85

13. Mond, B. and Weir, T. (1981), Generalized concavity and duality. In: Schaible, S. and
Ziemba, W. T. (eds.), Generalized Concavity in Optimization and Economics, Academic
Press, New York, pp. 263–279.

14. Pini, R. (1991), Invexity and generalized convexity, Optimization 22, 513–525.
15. Pini, R. and Singh, C. (1997), A survey of recent [1985–1995] advances in generalized

convexity with applications to duality theory and optimality conditions, Optimization
39, 311–360.

16. Reiland, T.W. (1990), Nonsmooth invexity, Bulletin of the Australian Mathematical
Society 42, 437–446.

17. Sawaragi, Y., Nakayama, H. and Tanino, T. (1986), Theory of Multiobjective Optimiza-
tion, Academic Press, New York.

18. White, D.J. (1982), Optimality and Efficiency, Wiley, New York.
19. Yang, X. (1994), Generalized convex duality for multiobjective fractional programs,

Opsearch 31, 155–163.
20. Yu, P.L. (1985), Multiple-Criteria Decision Making: Concepts, Techniques, and Exten-

sions, Plenum Press, New York.
21. Zalmai, G.J. (1994), Optimality conditions and duality models for a class of nonsmooth

constrained fractional variational problems, Optimization 30, 15–51.
22. Zalmai, G.J. (1996), Continuous-time multiobjective fractional programming, Optimiza-

tion 37, 1–25.
23. Zalmai, G.J. (1996), Proper efficiency conditions and duality models for nonsmooth mul-

tiobjective fractional programming problems with operator constraints, part I: theory,
Utilitas Mathematica 50, 163–202.

24. Zalmai, G.J. (1997), Proper efficiency conditions and duality models for nonsmooth mul-
tiobjective fractional programming problems with operator constraints, part II: applica-
tions, Utilitas Mathematica 51, 193–237.

25. Zalmai, G.J. (1998), Proper efficiency principles and duality models for a class of con-
tinuous-time multiobjective fractional programming problems with operator constraints,
Journal of Statistics and Management Systems 1, 11–59.


